Copied to
clipboard

G = C42.144D6order 192 = 26·3

144th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.144D6, C6.922- 1+4, C6.1282+ 1+4, D63Q833C2, C122Q831C2, (Q8×Dic3)⋊21C2, (D4×Dic3)⋊32C2, (C2×D4).177D6, C4.4D415S3, (C2×Q8).164D6, C22⋊C4.37D6, C422S321C2, D63D4.13C2, C2.52(D4○D12), (C2×C6).226C24, (C2×C12).82C23, C2.53(Q8○D12), C12.127(C4○D4), C4.39(D42S3), (C4×C12).189C22, D6⋊C4.111C22, (C6×D4).159C22, C23.8D642C2, C23.58(C22×S3), (C22×C6).56C23, (C6×Q8).130C22, Dic3.D442C2, C23.11D642C2, C23.21D627C2, Dic3⋊C4.49C22, (C22×S3).98C23, C4⋊Dic3.236C22, C22.247(S3×C23), (C2×Dic6).38C22, C39(C22.36C24), (C4×Dic3).136C22, (C2×Dic3).116C23, C6.D4.59C22, (C22×Dic3).146C22, C6.94(C2×C4○D4), (C3×C4.4D4)⋊18C2, C2.58(C2×D42S3), (S3×C2×C4).122C22, (C2×C4).199(C22×S3), (C2×C3⋊D4).64C22, (C3×C22⋊C4).68C22, SmallGroup(192,1241)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.144D6
C1C3C6C2×C6C22×S3S3×C2×C4C422S3 — C42.144D6
C3C2×C6 — C42.144D6
C1C22C4.4D4

Generators and relations for C42.144D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=b2c-1 >

Subgroups: 528 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4⋊Q8, C4×Dic3, C4×Dic3, Dic3⋊C4, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C6×D4, C6×Q8, C22.36C24, C122Q8, C422S3, Dic3.D4, C23.8D6, C23.11D6, C23.21D6, D4×Dic3, D63D4, Q8×Dic3, D63Q8, C3×C4.4D4, C42.144D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, 2- 1+4, D42S3, S3×C23, C22.36C24, C2×D42S3, D4○D12, Q8○D12, C42.144D6

Smallest permutation representation of C42.144D6
On 96 points
Generators in S96
(1 64 19 67)(2 68 20 65)(3 66 21 69)(4 70 22 61)(5 62 23 71)(6 72 24 63)(7 59 32 83)(8 84 33 60)(9 55 34 79)(10 80 35 56)(11 57 36 81)(12 82 31 58)(13 38 88 54)(14 49 89 39)(15 40 90 50)(16 51 85 41)(17 42 86 52)(18 53 87 37)(25 78 45 93)(26 94 46 73)(27 74 47 95)(28 96 48 75)(29 76 43 91)(30 92 44 77)
(1 43 7 50)(2 41 8 30)(3 45 9 52)(4 37 10 26)(5 47 11 54)(6 39 12 28)(13 62 95 57)(14 82 96 72)(15 64 91 59)(16 84 92 68)(17 66 93 55)(18 80 94 70)(19 29 32 40)(20 51 33 44)(21 25 34 42)(22 53 35 46)(23 27 36 38)(24 49 31 48)(56 73 61 87)(58 75 63 89)(60 77 65 85)(67 76 83 90)(69 78 79 86)(71 74 81 88)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 85 95 77)(14 76 96 90)(15 89 91 75)(16 74 92 88)(17 87 93 73)(18 78 94 86)(19 24 32 31)(20 36 33 23)(21 22 34 35)(25 46 42 53)(26 52 37 45)(27 44 38 51)(28 50 39 43)(29 48 40 49)(30 54 41 47)(55 56 66 61)(57 60 62 65)(58 64 63 59)(67 72 83 82)(68 81 84 71)(69 70 79 80)

G:=sub<Sym(96)| (1,64,19,67)(2,68,20,65)(3,66,21,69)(4,70,22,61)(5,62,23,71)(6,72,24,63)(7,59,32,83)(8,84,33,60)(9,55,34,79)(10,80,35,56)(11,57,36,81)(12,82,31,58)(13,38,88,54)(14,49,89,39)(15,40,90,50)(16,51,85,41)(17,42,86,52)(18,53,87,37)(25,78,45,93)(26,94,46,73)(27,74,47,95)(28,96,48,75)(29,76,43,91)(30,92,44,77), (1,43,7,50)(2,41,8,30)(3,45,9,52)(4,37,10,26)(5,47,11,54)(6,39,12,28)(13,62,95,57)(14,82,96,72)(15,64,91,59)(16,84,92,68)(17,66,93,55)(18,80,94,70)(19,29,32,40)(20,51,33,44)(21,25,34,42)(22,53,35,46)(23,27,36,38)(24,49,31,48)(56,73,61,87)(58,75,63,89)(60,77,65,85)(67,76,83,90)(69,78,79,86)(71,74,81,88), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,85,95,77)(14,76,96,90)(15,89,91,75)(16,74,92,88)(17,87,93,73)(18,78,94,86)(19,24,32,31)(20,36,33,23)(21,22,34,35)(25,46,42,53)(26,52,37,45)(27,44,38,51)(28,50,39,43)(29,48,40,49)(30,54,41,47)(55,56,66,61)(57,60,62,65)(58,64,63,59)(67,72,83,82)(68,81,84,71)(69,70,79,80)>;

G:=Group( (1,64,19,67)(2,68,20,65)(3,66,21,69)(4,70,22,61)(5,62,23,71)(6,72,24,63)(7,59,32,83)(8,84,33,60)(9,55,34,79)(10,80,35,56)(11,57,36,81)(12,82,31,58)(13,38,88,54)(14,49,89,39)(15,40,90,50)(16,51,85,41)(17,42,86,52)(18,53,87,37)(25,78,45,93)(26,94,46,73)(27,74,47,95)(28,96,48,75)(29,76,43,91)(30,92,44,77), (1,43,7,50)(2,41,8,30)(3,45,9,52)(4,37,10,26)(5,47,11,54)(6,39,12,28)(13,62,95,57)(14,82,96,72)(15,64,91,59)(16,84,92,68)(17,66,93,55)(18,80,94,70)(19,29,32,40)(20,51,33,44)(21,25,34,42)(22,53,35,46)(23,27,36,38)(24,49,31,48)(56,73,61,87)(58,75,63,89)(60,77,65,85)(67,76,83,90)(69,78,79,86)(71,74,81,88), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,85,95,77)(14,76,96,90)(15,89,91,75)(16,74,92,88)(17,87,93,73)(18,78,94,86)(19,24,32,31)(20,36,33,23)(21,22,34,35)(25,46,42,53)(26,52,37,45)(27,44,38,51)(28,50,39,43)(29,48,40,49)(30,54,41,47)(55,56,66,61)(57,60,62,65)(58,64,63,59)(67,72,83,82)(68,81,84,71)(69,70,79,80) );

G=PermutationGroup([[(1,64,19,67),(2,68,20,65),(3,66,21,69),(4,70,22,61),(5,62,23,71),(6,72,24,63),(7,59,32,83),(8,84,33,60),(9,55,34,79),(10,80,35,56),(11,57,36,81),(12,82,31,58),(13,38,88,54),(14,49,89,39),(15,40,90,50),(16,51,85,41),(17,42,86,52),(18,53,87,37),(25,78,45,93),(26,94,46,73),(27,74,47,95),(28,96,48,75),(29,76,43,91),(30,92,44,77)], [(1,43,7,50),(2,41,8,30),(3,45,9,52),(4,37,10,26),(5,47,11,54),(6,39,12,28),(13,62,95,57),(14,82,96,72),(15,64,91,59),(16,84,92,68),(17,66,93,55),(18,80,94,70),(19,29,32,40),(20,51,33,44),(21,25,34,42),(22,53,35,46),(23,27,36,38),(24,49,31,48),(56,73,61,87),(58,75,63,89),(60,77,65,85),(67,76,83,90),(69,78,79,86),(71,74,81,88)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,85,95,77),(14,76,96,90),(15,89,91,75),(16,74,92,88),(17,87,93,73),(18,78,94,86),(19,24,32,31),(20,36,33,23),(21,22,34,35),(25,46,42,53),(26,52,37,45),(27,44,38,51),(28,50,39,43),(29,48,40,49),(30,54,41,47),(55,56,66,61),(57,60,62,65),(58,64,63,59),(67,72,83,82),(68,81,84,71),(69,70,79,80)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I4J4K···4O6A6B6C6D6E12A···12F12G12H
order1222222344444444444···46666612···121212
size111144122224444666612···12222884···488

36 irreducible representations

dim11111111111122222244444
type++++++++++++++++++--+-
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D42+ 1+42- 1+4D42S3D4○D12Q8○D12
kernelC42.144D6C122Q8C422S3Dic3.D4C23.8D6C23.11D6C23.21D6D4×Dic3D63D4Q8×Dic3D63Q8C3×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C12C6C6C4C2C2
# reps11122221111111411411222

Matrix representation of C42.144D6 in GL8(𝔽13)

120000000
012000000
00100000
00010000
00003700
000061000
00000037
000000610
,
80000000
05000000
00100000
00010000
00000010
00000001
00001000
00000100
,
01000000
10000000
000120000
001120000
00000100
00001000
000000012
000000120
,
012000000
10000000
001120000
000120000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,6,0,0,0,0,0,0,7,10,0,0,0,0,0,0,0,0,3,6,0,0,0,0,0,0,7,10],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0],[0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C42.144D6 in GAP, Magma, Sage, TeX

C_4^2._{144}D_6
% in TeX

G:=Group("C4^2.144D6");
// GroupNames label

G:=SmallGroup(192,1241);
// by ID

G=gap.SmallGroup(192,1241);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,100,675,570,409,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽